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Abstract 

Theories of the development of analogical reasoning 
emphasize either the centrality of relational knowledge 
accretion or changes in information processing. Recent 
cross-cultural data collected from children in the United 
States and China (Richland, Chan, Morrison, & Au, 2010) 
provides a unique way to test these theories. Here we use 
simulations in LISA/DORA (Doumas, Hummel, & 
Sandhofer, 2008; Hummel & Holyoak, 1997, 2003), a 
neurally-plausible computer model of relational learning 
and analogical reasoning, to argue that the development of 
analogical reasoning in children may best be 
conceptualized as an equilibrium between knowledge 
accretion and progressive improvement in information 
processing capability.  Thus, improvements in inhibitory 
control in working memory as children mature enable them 
to process more relationally complex analogies.  At the 
same time, however, children produce more complex and 
more accurate analogies in domains in which they have 
learned richer and more refined representations of 
relational concepts.  

 
Relational thinking—i.e., thinking based on the roles that 
objects play rather than the literal features of those 
things—is a cornerstone of human cognition.  It underlies, 
among many other things, our ability to make analogies, 
or to appreciate correspondences between domains (e.g., 
Holyoak & Thagard, 1995).  

As with many cognitive processes, our ability to make 
analogies changes with development.  While there is 
considerable agreement that analogy is a very important 
process in cognitive development (e.g., Gentner, 2003), 
there is considerable disagreement as to how the ability to 
reason analogically develops.   

Theories of the Development of Analogical 
Reasoning 

Three primary hypotheses have been put forward to 
explain age-related differences in analogical reasoning: 
changes in domain knowledge, a relational shift from 
object similarity to relational similarity, and increased 
processing or working memory (WM) capacity. 

Goswami and colleagues (Goswami, 1992, 2001; 
Goswami & Brown, 1989) proposed that the ability to 
make analogies is present even in early infancy.  
However, children can only evidence this ability with age 
and increased knowledge.  In other words, the change in 
children’s ability to make analogies is not a function of a 
developing mechanism, but rather knowledge accretion. 

Alternately, Gentner and Rattermann (1991; 
Rattermann & Gentner, 1998) argued that a domain-
specific “relational shift” is responsible for changes in 
children’s analogical abilities.  Gentner and Rattermann 
suggest that as children build knowledge in a particular 
domain they progress from reasoning about that domain 
in terms of the perceptual features of objects, to the 
relations between those objects.  For example, 3 year-old 
children will categorize objects based on overall featural 
similarity (e.g., they will match apples to red balls rather 
than bananas), however by age 4 or 5, children will 
categorize objects based on relational similarity (e.g., 
matching apples to bananas even in the presence of 
featural distracters like red balls; Gentner & Namy, 1999).  
The ability to make analogies based on relational 
commonalities between domains, therefore, progresses on 
a domain-by-domain basis with more complex analogies 
produced in domains in which knowledge is richer. 

In contrast to accounts of analogy development based 
on increases in knowledge, the relational complexity 
hypothesis of Halford (1993; Andrews & Halford, 2002; 
Halford et al., 2002) holds that limits in children’s WM 
capacity affects their ability to process relations 
simultaneously, and therefore their ability to make 
analogies.  According to Halford and colleagues, children 
can process only specific levels of relational complexity, 
defined as the number of sources of variation that are 
related and must be processed together.  The simplest 
level of relational complexity is a binary relation, where 
only two arguments are sources of variation.  The 
relation, chase (dog, cat), for instance, specifies a single 
relation (chase) between two objects (dog, cat).  To 
reason about this relation, a one must keep only the two 
objects and their relation in mind.  A ternary relation (e.g., 
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gives-to (boy, girl, book) is more complex, requiring a 
reasoner to consider three objects and their respective 
roles.  The more complex the relation, the more WM 
resources are required to process it.  As children mature, 
neural developments leading to increased WM capacities 
(see, e.g., Diamond, 2002) allow processing situations 
with greater relational complexity, and, by extension, 
children are capable of drawing richer and more complex 
analogies.  

Likewise, Richland, Morrison, and Holyoak (2006) 
proposed that inhibitory control might help to explain the 
relationship between maturation and the impact of 
relational complexity on analogical reasoning in young 
children.  While inhibitory control has been a major topic 
in models of cognitive development (Bjorklund & 
Harnishbeger, 1990; Diamond, 2002) it has not previously 
been applied to understanding the development of 
analogy; however, the hypothesis that inhibitory control is 
important for the development of analogy is consistent 
with results from other cognitive tasks (e.g., Diamond, 
Kirkham & Amso, 2002; Lorsbach & Reimer, 1997; 
Zelazo et al., 2003).   

Multiple Sources in Analogical Development 
Richland, Morrison and Holyoak (2006) developed a 

set of scene analogy problems to investigate relational 
complexity and featural distraction within a single 
analogical reasoning task. They found that children from 
age 3 to 14 steadily improved in their ability to solve 
more relationally complex problems and resist distraction.  

In a follow-up study Richland, Chan, Morrison, and Au 
(2010) used these same problems with Cantonese 
speaking 3-4 year old children from Hong Kong. While 
US children of this age showed main effects of both 
relational complexity and featural distraction, Chinese 
children only showed an effect of featural distraction (see 
Figure 5). 

There are several reasons to believe that the Chinese 
children would score differently on analogical reasoning 
problems than U.S. children based on their knowledge 
base and experience with reasoning about relations.  
Adult studies have shown cultural differences in 
normative patterns for drawing relational inferences (see 
Nisbett 2003) such that Chinese and Japanese reasoners 
may be more attuned to relational correspondences than 
U.S. participants.  These differences also appear cross-
culturally in children's socialization and linguistic 
routines. For example, Asian caregivers use more action 
oriented language and referential verbs than relatively 
object-focused U.S. caregivers (e.g., Chinese: (Mandarin) 
Tardif, 1996; Tardif, Gelman & Xi, 1999; Tardif, Shatz, 
Naigles, 1997; (Cantonese) Leung, 1998). Chinese 
children themselves may additionally show a higher 
relative rate of verb usage in Mandarin (Tardif, 1996; 
2006; Tardif, Shatz, & Naigles, 1997; Tardif, Gelman, & 
Xu, 1999) than U.S. children of comparable ages who 
show a more pronounced noun bias.  In contrast, there is 

no theoretical reason to expect differences in information 
processing capacity between the US and Hong Kong 
(Hedden, et al., 2000). 

Accordingly, Richland et al. (2010) reasoned that the 
US and HK 3-4 year old children each had decreased 
inhibitory control relative to older children resulting in 
their distractibility, but that HK children had more 
sophisticated relational representations than US children 
resulting in their superior ability to solve more 
relationally complex problems. 

A Computational Account of the Multiple-
Source Theory of Analogical Development 

Previous Work 
Traditionally, researchers have attempted to model the 
effects of knowledge accretion and increased working 
memory capacity on analogical development in isolation. 
For example, Gentner and colleages (e.g., Gentner et al., 
1995) used SME (Falkenhainer, Forbus, & Gentner, 1989) 
to model the relational shift data of Gentner and 
Rattermann (1991).  Gentner et al. captured the 
differences in analogical reasoning in 4 and 5 year-old 
children by providing the model with more relational 
representations at age 5 than at age 4.  That is, with 
limited knowledge of relations, the model behaved like 
the younger children in Gentner and Rattermann’s 
experiments, making analogies based on over-all 
perceptual similarity.  However, with increased relational 
knowledge, the model behaved more like the older 
children, making analogies based on shared relations.  
Importantly the representations provided to the model had 
to be hand-coded by the modeler. 

More recently, Morrison, Doumas, and Richland 
(2006), used the LISA model (Hummel & Holyoak, 1997, 
2003) in an attempt explain changes in children’s analogy 
making in terms of changes in capacity limits.  LISA is a 
model of analogy-making that relies on time as a signal to 
bind distributed (i.e., connectionist) representations of 
objects and relational roles into structured (i.e., symbolic) 
representations.  LISA is powerful, in part, because it 
benefits from both the flexibility of connectionist 
approaches and the structure-sensitivity of symbolic 
approaches (an important property for demonstrating 
human like relational reasoning; see, e.g., Doumas & 
Hummel, 2005; Holyoak & Hummel, 2000; Penn, 
Holyoak, & Povinelli, 2008).  In addition, as a 
consequence of using time to carry binding information, 
LISA suffers from capacity limitations that mirror those 
of human WM (Hummel & Holyoak, 2003; Morrison, 
Doumas, & Richland, 2006; Morrison et al., 2005).  LISA 
relies on lateral inhibition between units to establish the 
temporal patterns that carry binding information.  By 
decreasing lateral inhibition, LISA’s WM is effectively 
reduced.  Morrison et al. (2006), used this property of to 
capture the pattern of results from Richland et al. (2006). 

Approaches using SME and LISA both suffer from 
limitations, though.  First, each approach is based on a 
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single explanatory variable. As a result, the knowledge 
accretion approach seems insufficient to explain the 
results of the Scene Analogy task (see Richland et al., 
2006), while the simply changing capacity limits cannot 
explain the cross-cultural findings of Richland et al. 
(2010). In addition, both approaches rely on hand-coded 
relational representations that must be added by the 
modeler.  Neither model makes any claims where these 
representations, which both models require in order to 
reason relationally—and that provide the explanatory 
mechanism in the knowledge accretion case—come from 
in the first place.   

Doumas, Hummel, and Sandhofer (2008) have 
developed an extension of the LISA model, called DORA 
(Discovery of Relations by Analogy) that learns structured 
representations of relations from unstructured (i.e., flat 
feature vector) representations of object properties.  
DORA provides a means by which the representations 
used by LISA are learned from examples, and, 
consequently, provides an opportunity to understand the 
interplay between the dual sources of knowledge 
accretion and increasing capacity limits as effectors of the 
changes in children’s analogy making. 
 
The LISA/DORA model 
LISA (Hummel & Holyoak, 1997, 2003) is a symbolic-
connectionist model of analogy and relational reasoning. 
DORA (Doumas et al., 2008) is an extension of LISA that 
learns structured (i.e., symbolic) representations of 
relations from unstructured inputs. That is, DORA 
provides an account of how the structured relational 
representations LISA uses to perform relational reasoning 
can be learned from examples.  

DORA accounts for over 20 phenomena from the 
literature on relational learning, as well as its 
development (e.g., Doumas & Hummel, 2010; Doumas et 
al., 2008).  In addition, as DORA learns relational 
representations, it comes to take LISA as a special case, 
and can simulate the additional 30+ phenomena in 
relational thinking simulated by LISA. The description of 
LISA/DORA that follows is a brief overview due to space 
constraints.  For full details of the models and their 
operations see Doumas et al. (2008) and Hummel and 
Holyoak (1997, 2003). 
LISAese Representations  In LISA (and DORA after it 
has gone through learning) relational structures are 
represented by a hierarchy of distributed and localist 
codes (see Figure 1). At the bottom, “semantic” units 
represent the features of objects and roles in a distributed 
fashion. At the next level, these distributed 
representations are connected to localist units (POs) 
representing individual predicates (or roles) and objects. 
Localist role-binding units (RBs) link object and predicate 
units into role-filler binding pairs. At the top of the 
hierarchy, localist P units link RBs into whole relational 
propositions.   
 

 
Figure 1. (a) Representation of a LISA/DORA representation 
like that used to simulate a Scene analogy problem like that in 
(b). The P (oval), RB (rectangle), and predicate (triangle) units 
were learned during Simulation Part One.  Objects (circles) 
desribed the objects involved in the Scene Analogy problem. (b) 
Example of a scene analogy problem from Richland et al., 2006. 
 

Propositions are divided into two mutually exclusive 
sets: a driver and one or more recipients. In LISA/DORA, 
the sequence of firing events is controlled by the driver. 
Specifically, one (or at most three) proposition(s) in the 
driver becomes active (i.e., enter working memory). 
When a proposition in the driver becomes active, role-
filler bindings must be represented dynamically on the 
units that maintain role-filler independence (i.e., POs and 
semantic units; see Hummel & Holyoak, 1997). In LISA 
binding information is carried by synchrony of firing 
(with roles firing simultaneously with their fillers).  In 
DORA, binding information is carried by systematic 
asynchrony of firing, with bound role-filler pairs firing in 
direct sequence (see Doumas et al., 2008 for details).1 
Activation flows from the driver units to their semantic 
units. Units in the driver and recipient share the same pool 
of semantic units. Thus, units in the recipient become 
active in response to the pattern of activation imposed on 
the semantic units by the active driver proposition.  
Relational Learning Very simply, DORA uses 
comparison to isolate shared properties of objects and to 
represent them as explicit structures. DORA starts with 
simple feature-vector representations of objects (i.e., a 
node connected to set of features describing that object). 
When DORA compares one object to another, 
corresponding features of the two representations fire 
simultaneously. Any semantic features common to both 
objects receive twice as much input and thus become 
roughly twice as active as features connected to one but 
not the other. By recruiting a new PO unit and learning 
connections between that unit and active semantics via 
Hebbian learning (wherein the strength of connections is a 
function of the units’ activation), DORA learns stronger 
connections between the new PO unit and more active 

                                                           
1 Asynchrony-based binding allows role and filler to be coded 
by the same pool of semantic units, which allows DORA to 
learn representations of relations from representations of objects 
(Doumas et al., 2008). 
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semantic units.  The new PO thus becomes an explicit 
representation of the featural overlap of the compared 
objects. Applied iteratively this process results in explicit 
and structured representations of object properties and 
relational roles (see Doumas et al., 2008).  Comparison 
also allows DORA to learn representations of multi-place 
relations by linking sets of constituent role-filler pairs into 
relational structures (i.e., to learn the chases relation by 
linking together representations of the roles chaser and 
chased; see Doumas et al., 2008 for details).  
Mapping For the purposes of analogical mapping, 
LISA/DORA learns mapping connections between units 
of the same type (e.g., PO, RB, etc.) in the driver and 
recipient (e.g., between PO units in the driver and PO 
units in the recipient). These connections grow whenever 
corresponding units in the driver and recipient are active 
simultaneously.  They permit LISA to learn the 
correspondences (i.e., mappings) between corresponding 
structures in separate analogs. They also permit 
correspondences learned early in mapping to influence the 
correspondences learned later. 
 

Simulations 
Methods 
We tested the hypothesis that differences in performance 
between U.S. and Chinese children were due to 
differences in relational knowledge.  Specifically, we 
hypothesized that the relational representations of 
children from Hong Kong were more developed than 
those of children from the U.S.  We used LISA/DORA to 
test this hypothesis by simulating the results of Richland 
et al. (2010).  The simulation consisted of two 
complementary parts.  In the first part we used DORA to 
develop representations of relational concepts from 
examples.  We simulated the difference in U.S. and 
Chinese children by allowing DORA increased learning 
trials in order to simulate the Chinese children, reflecting 
the assumption that the experience of children in Hong 
Kong differs from children in the U.S.  We then used the 
representations that DORA had learned during the first 
part of the simulation to simulate the Richland et al. 
(2010) task. 

Simulation Part One We used DORA’s relational 
learning algorithm (see Doumas et al., 2008 for details) to 
develop relational representations from unstructured 
examples. We started DORA with representations of 100 
objects attached to random sets of features (chosen from a 
pool of 100). We then defined 4 relations (chase, reach-
for, angry-with, and hang-from). Each relation consisted 
of two roles, each with three semantic features (e.g., for 
the chase relation, both the roles chaser and chased were 
each defined by three specific semantic units). Each of the 
100 objects was attached to the features of between 1 and 
3 relational roles chosen at random. For example, object1 
might be attached to the features for chaser (one role of 
chases) and reaching (one role of reach-for). On each 

iteration we presented DORA with sets of objects from 
similar relations, and allowed it to compare the objects 
and learn from the results (as per DORA’s relation 
learning algorithm). As DORA learned new 
representations it would also use these representations to 
make subsequent comparisons. For instance, if DORA 
learned an explicit representation of the property chases 
(x, y) by comparing sets objects attached to the roles of 
chase (i.e., chaser and chased), it could use this new 
representation for future comparisons. On each trial we 
selected between 2 and 4 representations and let DORA 
compare them and learn from the results (i.e., perform 
predication, and relation learning routines). 

We ran 25 sessions each consisting of 800 learning 
trials During each session, the inhibition parameter was 
set to a value sampled from a random distribution with a 
mean of 0.7, and a standard distribution of 0.1. The value 
of the parameter reflected the reduced WM capacity 
evidenced in young children (see Morrison et al., 2006)..  
We measured the quality of the representations DORA 
had learned during the last 100 trials after each 100 trials. 
Quality was calculated as the mean of connection weights 
to relevant features (i.e., those defining a specific 
transformation or role of a transformation) divided by the 
mean of all other connection weights + 1 (1 was added to 
the mean of all other connection weights to normalize the 
quality measure to between 0 and 1). A higher quality 
denoted stronger connections to the semantics defining a 
specific relation relative to all other connections (i.e., a 
more pristine representation of the relation). Figure 2 
shows the quality of the representations DORA learned 
for each set of 100 comparisons from 100 to 800.  As 
expected, the quality of the representations DORA learns 
increase as a function of experience (see Doumas et al., 
2008 for more details) 

 
Figure 2.  Quality of the representations DORA learned 
during Simulation Part One. 
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Simulation Part Two To model the Scene Analogy 
Problems we used representations of the four problem 
types (1-relation, no distracter; 1-relation, distracter; 2-
relation, no distracter; 2-relation, distracter) composed 
from the representations DORA had learned during 
Simulation Part One.  For example, to represent the 
problem from Figure 1, we used a representation of the 
chase relation DORA had learned during Simulation Part 
One (relational role, RB, and P units) along with object 
units (e.g, boy and girl) composed of 5 semantic features 
describing that object (see Figure 1).  For 2-Relation 
problems both relations were represented in LISA’s WM 
together (Hummel & Holyoak, 1997).  Vitally, we 
simulated children from the U.S. by using the 
representations DORA had learned after only 400 
comparisons, and those of the children from Hong Kong 
using the representations DORA had learned after 600 
comparisons. 

The laternal inhibition parameter was set exactly as in 
Simulation Part One. Each simulation run consisted of 
firing three phase sets in LISA/DORA’s working 
memory, “randomly” assigned by LISA/DORA and 
allowing LISA/DORA to try to map the representation in 
the driver to the representation in the recipient.  When 
LISA/DORA failed to determine a stable mapping after 
firing three phase sets, an answer was selected at random. 
 
Results 
The simulation results along with the experimental results 
from Richland et al. (2010) are presented in Figure 3.  
LISA/DORA’s performance mirrored experimental 
results for the age groups from both the U.S. and China 
across conditions.   

 
Figure 3: Experimental (Richland et al. 2010) and 
Simulation,. 

General Discussion 
In this paper we presented simulations in LISA/DORA 
that support the hypothesis that both maturation of 
inhibitory control in working memory and development 
of knowledge representations is critical for the 
development of adult-like analogical reasoning. 
Specifically, we demonstrated that simple changes in 
inhibition levels in LISA/DORA (i.e., inhibition between 
elements of competing relational representations in 
working memory) coupled with DORA’s predicate 
learning routines could account for both relational 
complexity and featural distraction effects in young 
children’s analogical reasoning performance across 
cultures.  In contrast, approaches based on knowledge 
accretion and capcity changes in isolation seem unable to 
capture all of these results.   

We conclude that both relational knowledge acquisition 
and inhibitory control in working memory shape an 
individual’s analogical reasoning performance. We 
suggest that the development of analogical reasoning in 
children can be conceptualized as an interaction between 
these two factors.  As children age their knowledge about 
relations advances while their working-memory capacity 
as modulated by inhibitory control also improves.  At a 
given time during development, the child is able to 
perform an analogical task based on both their level of 
relational knowledge and their working-memory 
resources.  Specifically, the equilibrium operates such that 
greater relational knowledge can impose fewer processing 
demands while less knowledge imposes higher demands. 
Thus, Hong Kong children given the same working-
memory resources can better solve relational complex 
problems. Thus, as relational knowledge increases in a 
domain, the demands on working memory decline, 
allowing for more complex reasoning at any given age.  
This pattern in cognitive development builds on an 
understanding of working-memory effects in expertise 
(e.g., Chase & Simon, 1973) where advanced relational 
knowledge can decrease processing demands and thereby 
allow experts to accomplish cognitive tasks which 
novices cannot. 

We believe that to truly understand the development of 
relational reasoning in children, future experimental and 
computational studies must take into account both 
advances in relational knowledge and changes in 
inhibitory control in working memory, and importantly, 
studying how these two aspects of development interact. 
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